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Abstract. Given two convex lower semicontinuous extended real val-
ued functions F and h de�ned on locally convex spaces, we provide a
dual transcription of the relation

(?) F (0; �) � h (�) :
Some results in this direction are obtained in the �rst part of the paper
(Lemma 2, Proposition 1), and they are applied to the case when the
left-hand-side in (?) is the sum of two convex functions with a convex
composite one (Theorem 1). In the spirit of previous works ([16], [23],
[24], [26], [27], etc.) we give in Theorem 2 a formula for the subdif-
ferential of such a function without any quali�cation condition. As a
consequence of that, we extend to the nonre�exive setting a recent re-
sult ([22, Theorem 3.2]) about subgradient optimality conditions with-
out constraint quali�cations. Finally, we apply Theorem 1 to obtain
Farkas-type lemmas and new results on DC, convex, semi-de�nite, and
linear optimization problems.

1. Introduction

This paper deals with transcriptions of inequalities of the form

(?) F (0; �) � h (�) ;
where F and h are two convex and lower semicontinuous extended real val-
ued functions de�ned on locally convex vector spaces, and their applications
to optimization problems. With this purpose, we introduce dual charac-
terizations of the inequality (?) without constraint quali�cation (CQ) nor
closedness condition (CC). The results are then applied to the case when
the function F is the sum of two convex functions with a convex composite
one. This, in turn, gives rise to an asymptotic formula for subdi¤erentials
of such special type of functions. The rest of the paper is devoted to appli-
cations of the previous results to di¤erent settings. Firstly, we get various
versions of generalized Farkas-type results without CQ nor CC which have
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their own interest. Secondly, several classes of optimization models are con-
sidered: DC problems with convex constraints (including semide�nite ones),
convex and semide�nite problems, and in�nite linear problems. For these
classes of problems, optimality and duality theorems are given together with
discussions on their connections with known results in the literature.
The paper is organized as follows. Section 2 contains the preliminary

notions and notations. In Section 3 we give, using a dual approach, a simple
characterization of the epigraph of certain marginal function de�ned on a
dual space. This gives rise to another simple characterization of inequalities
of the form (?) which turns out to have fruitful applications, as shown in
the rest of the paper. In Section 4, we give a transcription of a special-
but-important case of (?) where the function F is the sum of two convex
functions with a convex composite one. An application of this result is
given in Section 5, whose main result is the formula of subdi¤erential of
the function of the form f + g + k �H without CQ, which covers the well-
known one established by Hiriart-Urruty and Phelps in [16]. The last three
sections, Sections 6, 7, and 8, present applications of the results obtained in
previous sections to three optimization models: DC optimization problems
with convex constraints, convex and semide�nite optimization, and in�nite
linear optimization, respectively. In each section, we �rstly establish the
Farkas lemma corresponding to the system associated with the problem,
then we provide various forms of optimality conditions (such as dual and
sequential Lagrange forms), and lastly, we give duality results. Throughout
these last sections, discussions on the relation between the results obtained
and the known ones in the literature are given.

2. Preliminary notions

Let X be a locally convex Hausdor¤ topological vector space (l.c.H.t.v.s.)
whose topological dual is denoted by X�: The only topology we consider on
X� is the w�-topology. Given A � X; we denote by coA; coneA and A
the convex hull, the conical convex hull and the closure of A; respectively.
We denote by R the extended real line R[f�1g : By convention, (+1)�
(+1) = +1:
With any extended real-valued function f : X ! R is associated the

Legendre-Fenchel conjugate of f which is the function f� : X� ! R de�ned
by

f� (x�) = sup
x2X

(hx�; xi � f (x)) ; 8x� 2 X�:

A similar notion holds for any ' : X� ! R :

'� (x) = sup
x�2X�

(hx�; xi � ' (x)) ; 8x 2 X:

We represent by dom f := fx 2 X : f (x) < +1g the e¤ective domain of
f and say that f is proper if dom f 6= ; and f (x) > �1 8x 2 X: We also
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use the notation

[f � �] := fx 2 X : f(x) � �g;

as well as the correspondingly de�ned sets [f � �] ; [f < �] ; and [f > �] :
The set of proper lower semicontinuous (l.s.c.) convex functions on X is

denoted by � (X) : For any proper f 2 RX one has

f 2 � (X), f = f��:

The in�mal convolution of two proper functions f; g 2 RX is the function
f�g de�ned by

(f�g) (x) = inf
�
f
�
x0
�
+ g

�
x00
�
: x0 + x00 = x

	
:

The operator � is associative and if h 2 RX is another proper function we
set

f�g�h = (f�g)�h = f� (g�h) :

Given a 2 f�1 (R) and " � 0; the "-subdi¤erential of f at the point a is
de�ned by

@"f (a) = fx� 2 X� : f (x)� f (a) � hx�; x� ai � "; 8x 2 Xg :

One has

@"f (a) = [f
� � h�; ai � "� f (a)] = fx� 2 X� : f� (x�)� hx�; ai � "� f (a)g :

The Young-Fenchel inequality

f� (x�) � hx�; ai � f (a)

always holds. The equality holds if and only if x� 2 @f (a) := @0f (a) :
The indicator function of a set A � X is given by iA (x) = 0 if x 2 A;

iA (x) = +1 if x 2 X�A: The conjugate of iA is the support function of
A; i�A : X

� ! R [ f+1g:
The "-normal set to A at a point a 2 A is de�ned by

N" (A; a) = @"iA (a) :

The limit superior when � ! 0+ of the family (A�)�>0 of subsets of a
topological space is de�ned (in terms of generalized sequences or nets) by

lim sup
�!0+

A� :=

�
lim
i
ai : ai 2 A�i ;8i 2 I; and �i ! 0+

�
;

where �i ! 0+ means that (�i)i2I ! 0 and �i > 0; 8i 2 I:
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3. Dual approach of convex inequalities

Let U be another l.c.H.t.v.s. whose topological dual we denote by U�:
Given G : U� � X� ! R; let us consider the marginal function on X�

associated with G; which is de�ned by

(3.1)  (x�) = inf
u�2U�

G (u�; x�) ; 8x� 2 X�:

The closure of ; that is the greatest l.s.c. extended real-valued function
minorizing ; is given by

(3.2)  (x�) = sup
V 2N(x�)

infex�2V  (ex�) ; 8x� 2 X�;

where N (x�) denotes a neighborhoods basis of x�: By using nets, one has

(3.3)  (x�) = min
x�i!x�

lim inf
i2I

 (x�i ) ; 8x� 2 X�:

In terms of epigraphs, epi  := f(x�; r) 2 X� � R :  (x�) � rg coincides with
the closure of epi  with respect to the product topology on X� � R: More
precisely, one has:

Lemma 1. Let  be given by (3.1). For any (x�; r) 2 X��R, the following
are equivalent:
(a)  (x�) � r;
(b) there exists (u�i ; x

�
i ; "i)i2I � U� � X� � R such that G (u�i ; x�i ) � r + "i

for all i 2 I; and (x�i ; "i)! (x�; 0+) :

Proof. [(a)) (b)] For any V 2 N(x�) and any " > 0 one has, from (3.2),

infex�2V  (ex�) < r + ":
Hence there are x�V;" 2 V and u�V;" 2 U� such that G

�
u�V;"; x

�
V;"

�
� r + ";

and the net
�
u�V;"; x

�
V;"; "

�
(V;")2N(x�)�]0;+1[

satis�es (b):

[(b)) (a)] From (3.3) one has

 (x�) � lim inf
i2I

 (x�i ) � lim inf
i2I

G (u�i ; x
�
i ) � r:

�
Throughout this paper  will be convex (i.e. epi  is convex). This is in

particular the case when G itself is convex ([31, Theorem 2.1.3]). A classical
argument allows us to express the Legendre-Fenchel conjugate � of  in
terms of the one G� of G: One has in fact ([31, Theorem 2.6.1])

(3.4) � (x) = G� (0; x) ; 8x 2 X:
Assuming that dom � = fx 2 X : G� (0; x) < +1g is nonempty, we get the
existence of a continuous minorant of the convex function ; and so ([10,
Proposition 3.3])

(3.5)  = ��:
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The following lemma will be very useful in the sequel.

Lemma 2. Assume that  is convex and dom � 6= ;: For any h 2 � (X) ;
the following statements are equivalent:
(a) G� (0; x) � h (x) ; for all x 2 X;
(b) for every x� 2 domh�; there exists (u�i ; x�i ; "i)i2I � U� � X� � R such
that G (u�i ; x

�
i ) � h� (x�) + "i; for all i 2 I; and (x�i ; "i)! (x�; 0+) :

Proof. [(a)) (b)] Since G� (0; �) � h one has ([31, Theorem 2.3.1(iii)])
(G� (0; �))� � h�; which means, from (3.4) and (3.5),  � h�:
Given x� 2 domh�; we can apply Lemma 1 with r = h� (x�) ; and (b)

follows.
[(b)) (a)] Let x� 2 domh� and (u�i ; x�i ; "i)i2I as in (b): For any i 2 I and

x 2 X one has
hx�; xi � h� (x�) � hx�; xi �G (u�i ; x�i ) + "i

= hx� � x�i ; xi+ hx�i ; xi �G (u�i ; x�i ) + "i
� hx� � x�i ; xi+G� (0; x) + "i:

Passing to the limit on i we get

hx�; xi � h� (x�) � G� (0; x) ; 8x� 2 domh�:
Taking the supremum over x� 2 domh� we obtain

h (x) = h�� (x) � G� (0; x) ; 8x 2 X:
�

Let us consider F 2 � (U �X) : Applying Lemma 2 with G = F �; we can
state:

Proposition 1. Let F 2 � (U �X) with fx 2 X : F (0; x) < +1g 6= ;: For
any h 2 � (X) ; the following statements are equivalent:
(a) F (0; x) � h (x) ; for all x 2 X;
(b) for every x� 2 domh�; there exists (u�i ; x�i ; "i)i2I � U� � X� � R such
that F � (u�i ; x

�
i ) � h� (x�) + "i; for all i 2 I; and (x�i ; "i)! (x�; 0+) :

4. Transcribing the inequality f + g + k �H � h

Let Z be another l.c.H.t.v.s., f; g 2 �(X), and k 2 �(Z): Let H : X ! Z
be a mapping such that

(4.1) z� �H 2 �(X); for all z� 2 dom k�:
Observe that, in particular, (4.1) is satis�ed when Z is equipped with a
closed convex preordering cone S; k is nondecreasing with respect to S, H
is convex w.r.t. S; and H is lower semicontinuous w.r.t. S, that means (see
([25])):

8x 2 X; 8V 2 N(H(x)); 9W 2 N(x) such that H(W ) � V + S:
For further investigation, assume that

(4.2) (dom f) \ (dom g) \H�1(dom k) 6= ;:
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We are interested in transcribing the convex inequality of the form

f(x) + g(x) + k(H(x)) � h(x); for all x 2 X:
The main result is given in the following theorem where Lemma 2 serves as
a main tool for its proof.

Theorem 1. Let f; g 2 �(X), k 2 �(Z), and H : X ! Z be such that
(4.1) and (4.2) hold. Then, for any h 2 �(X); the following statements are
equivalent:
(a) f(x) + g(x) + k(H(x)) � h(x); for all x 2 X;
(b) for every x� 2 domh� there exists a net (x�1i; x�2i; x�3i; z�i ; "i)i2I � (X�)3�
Z� � R such that
f�(x�1i) + g

�(x�2i) + k
�(z�i ) + (z

�
i �H)�(x�3i) � h�(x�) + "i; for all i 2 I;

and
(x�1i + x

�
2i + x

�
3i; "i)! (x�; 0+):

Proof. Let us consider the function

G : (X� �X� � Z�)�X� ! R
de�ned as follows

G((x�1; x
�
2; z

�); x�) = f�(x�1) + g
�(x�2) + k

�(z�) + (z� �H)�(x� � x�1 � x�2);
for any ((x�1; x

�
2; z

�); x�) 2 (X� �X� � Z�)�X�: Here U = X �X � Z:
The marginal function  associated with G by (3.1) is

(x�) = inf
z�2dom k�

fk�(z�) + (f��g��(z� �H)�) (x�)g ; for all x� 2 X�:

It is worth observing �rst that  is convex. This is due to the fact that G is
convex because it is the sum of the convex function

((x�1; x
�
2; z

�); x�) 7! f�(x�1) + g
�(x�2) + k

�(z�);

and the supremum over x 2 X of the a¢ ne functions

((x�1; x
�
2; z

�); x�) 7! hx� � x�1 � x�2; xi � hz�;H(x)i :
Let us now calculate the conjugate, �, of the function : Thanks to (4.1)
we can write

�(x) = sup
x�2X�

�
hx�; xi � inf

z�2dom k�
fk�(z�) + (f��g��(z� �H)�) (x�)g

�
= sup

x�2X�
sup

z�2dom k�
fhx�; xi � k�(z�)� (f��g��(z� �H)�) (x�)g

= sup
z�2dom k�

�
�k�(z�) + sup

x�2X�
fhx�; xi � (f��g��(z� �H)�) (x�)g

�
= sup

z�2dom k�
f�k�(z�) + (f��g��(z� �H)�)� (x)g

= sup
z�2dom k�

f�k�(z�) + (f + g + (z� �H)) (x)g

= f(x) + g(x) + sup
z�2dom k�

fhz�;H(x)i � k�(z�)g ;
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so that

(4.3) �(x) = f(x) + g(x) + k(H(x)):

Thus,  is convex and, by (4.2) and (4.3), dom � 6= ;. The conclusion of
the theorem follows from Lemma 2. �

In the next sections we give relevant applications of Theorem 1. The �rst
one concerns the subdi¤erential of the function f + g + k �H: In the spirit
of previous works ([15], [16], [23], [26], [27], and [31]), we derive a formula
without any CQ in terms of "-subdi¤erentials. The remaining applications
are Farkas-Minkowski inequality systems and containments, without CQ nor
CC, which provide optimality and duality results for di¤erent optimization
models.

5. Subdifferential of f + g + k �H

Let f; g 2 �(X), k 2 �(Z), and H : X ! Z be as in Theorem 1, and let
a 2 (dom f) \ (dom g) \H�1(dom k):
We are now in position to establish an "asymptotic form" of the subdif-

ferential of f + g+ k �H which is an extension of the well-known one given
in [16] (see Corollary 1 below).

Theorem 2. Let f; g 2 �(X), k 2 �(Z), and H : X ! Z be such that (4.1)
holds. Then, for every a 2 X such that f(a) + g(a) + k(H(a)) 2 R, it holds

@(f+g+k�H)(a) = lim sup
�!0+

0@ [
z�2@�k(H(a))

f@�f(a) + @�g(a) + @�(z� �H)(a)g

1A :
Proof. Let x� 2 X�:
� Assume that x� 2 @(f + g+ k �H)(a). Observe that x� 2 @(f + g+ k �

H)(a) if and only if the statement (a) in Theorem 1 holds with

h(x) := hx�; x� ai+ f(a) + g(a) + k(H(a)):
In order to apply Theorem 1 let us �rst quote that

h�(�) = ifx�g(�) + hx�; ai � f(a)� g(a)� k(H(a)):

Note that dom � 6= ; since a 2 dom � = (dom f)\ (dom g)\H�1(dom k).
It follows, from the previous arguments and Theorem 1, that x� 2 @(f +g+
k �H)(a) if and only if there exists a net

(x�1i; x
�
2i; x

�
3i; z

�
i ; "i)i2I � (X�)3 � Z� � R

such that
(5.1)
f�(x�1i)+g

�(x�2i)+(z
�
i �H)�(x�3i)+k�(z�i ) � hx�; ai�(f+g+k�H)(a)+"i; 8i 2 I;

and
(x�1i + x

�
2i + x

�
3i; "i)! (x�; 0+):
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By the Young-Fenchel inequality, we can rewrite (5.1) as follows

0 � [f�(x�1i) + f(a)� hx�1i; ai] + [g�(x�2i) + g(a)� hx�2i; ai]
+ [(z�i �H)�(x�3i) + (z�i �H)(a)� hx�3i; ai]
+ [k�(z�i ) + k(H(a))� hz�i ;H(a)i]

� hx� � x�1i � x�2i � x�3i; ai+ "i; 8i 2 I:
Setting �i := hx� � x�1i � x�2i � x�3i; ai + "i we get �i ! 0+: Moreover, since
the four brackets above are nonnegative, each of them is less or equal than
�i; for any i 2 I: Therefore we have

(5.2)

8<: x� = limi(x�1i + x
�
2i + x

�
3i) with

x�1i 2 @�if(a); x�2i 2 @�ig(a); x�3i 2 @�i(z�i �H)(a);
z�i 2 @�ik(H(a)); and �i ! 0+

or, equivalently,

x� 2 lim sup
�!0+

0@ [
z�2@�k(H(a))

f@�f(a) + @�g(a) + @�(z� �H)(a)g

1A :
� Conversely, assume now that x� 2 X� satis�es (5.2). It follows from (3.3),
(3.5), (5.2), and (4.3) that

(f + g + k �H)� (x�) = (x�) � lim inf
i2I

(x�1i + x
�
2i + x

�
3i)

� lim inf
i2I

[k�(z�i ) + f
�(x�1i) + g

�(x�2i) + (z
�
i �H)�(x�3i)]

� lim inf
i2I

[hx�1i + x�2i + x�3i; ai � f(a)� g(a)� k(H(a)) + 4�i]

= hx�; ai � f(a)� g(a)� k(H(a));
and hence, x� 2 @(f + g + k �H)(a). The proof is complete. �
In Theorem 2, if we take k � 0, then the subdi¤erential formula in this

theorem collapses to the well-known one established by Hiriart-Urruty and
Phelps in [16], as it is stated in the following corollary.

Corollary 1. Let f; g 2 �(X): Then

@(f + g)(a) =
\
">0

cl (@"f(a) + @"g(a))

for any a 2 (dom f) \ (dom g).

6. DC optimization with convex constraints in the absence of
CQ�s

Let f; h 2 �(X), C be a closed convex set in X, S a preordering closed
convex cone in Z; and H : X ! Z a mapping. Remember that we use the
notation

[f � h � 0] := fx 2 X : f(x)� h(x) � 0g;
and observe that [f � h � 0] = [f � h]:
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The main result of this section is the generalized Farkas lemma (in dual
form) without any constraint quali�cation which is given in Theorem 3 be-
low. This, at the same time, gives a characterization of set containment of
a convex set de�ned by a cone constraint, C \H�1 (�S) ; in a DC set (i.e.,
a set de�ned by a DC inequality) which, in certain sense, extends the ones
involving convex and DC sets in earlier works ([8], [11], [17]).

Theorem 3 (Farkas lemma involving DC functions). Let f; h 2 �(X);
C be a closed convex set in X, S a preordering closed convex cone in Z; and
H : X ! Z a mapping. Assume that for all z� 2 S+; z� �H 2 �(X); and
C \ dom f \H�1(�S) 6= ;. Then the following statements are equivalent:
(a) C \H�1(�S) � [f � h � 0];
(b) for all x� 2 domh�, there exists a net (x�1i; x�2i; x�3i; z�i ; "i)i2I � (X�)3 �
Z� � R such that (z�i )i2I � S+,

f�(x�1i) + i
�
C(x

�
2i) + (z

�
i �H)�(x�3i) � h�(x�) + "i; for all i 2 I;

and
(x�1i + x

�
2i + x

�
3i; "i)! (x�; 0+):

Proof. We are going to apply Theorem 1, with g = iC and k = i�S : Then
k� = i��S , and we can easily observe that dom k

� = S+; which entails the
ful�lment of (4.1). Moreover, if z� 2 S+ then k�(z�) = 0.
We are assuming that C \ dom f \H�1(�S) 6= ;; which is equivalent to

condition (4.2) in our particular setting. Hence, we can apply Theorem 1,
and the rest of the proof is devoted to verify that statements (a) and (b)
here are equivalent to the corresponding ones in Theorem 1.
Since the equivalence between both statements (a) is straightforward, let

us prove the equivalence of both (b)�s. In fact, statement (b) in Theorem 1
now reads:
For all x� 2 domh�, there exists an associated net (x�1i; x�2i; x�3i; z�i ; "i)i2I �

(X�)3 � Z� � R such that
(6.1) f�(x�1i)+ i

�
C(x

�
2i)+k

�(z�i )+(z
�
i �H)�(x�3i) � h�(x�)+"i; for all i 2 I;

and
(x�1i + x

�
2i + x

�
3i; "i)! (x�; 0+):

Since x� 2 domh�; we have h�(x�) < +1; and this entails, together with
the convention (+1)� (+1) = +1; that z�i 2 S+; and so k�(z�i ) = 0; for
all i 2 I: In this way, we get statement (b) in our theorem. �
Theorem 3 can be applied in various situations: convex and reverse convex

containment (see, e.g., [8], [11], [17], [18]), asymptotic Farkas lemma for
systems with DC functions ([4], [5], [21]), and DC optimization problems
under convex constraints ([19]).
Now we consider the following type of DC problems with cone-convex and

set constraints:

(DC)

�
minimize [f(x)� h(x)]
s.t. x 2 C; H(x) 2 �S:



10 N. DINH, M.A. GOBERNA, M.A. LÓPEZ, AND M. VOLLE

Let k = i�S and g = iC . Then the relation H(x) 2 �S is equivalent
to (k � H)(x) = k(H(x)) = 0 and the (DC) problem is equivalent to the
following one:

(DC1) inf
x2X

[f(x) + iC(x) + i�S(H(x))� h(x)]:

Let us denote the feasible set of (DC) by A := C \H�1(�S):

Proposition 2 (Characterization of global optimality for (DC)). Let
f; h; H; C; and S be as in Theorem 3. Then a point a 2 A\dom f\domh is
a global minimum of (DC) if and only if for every x� 2 domh� there exists
a net (x�1i; x

�
2i; x

�
3i; z

�
i ; "i)i2I � (X�)3 � Z� � R satisfying (z�i )i2I � S+,

f�(x�1i)+ i
�
C(x

�
2i)+ (z

�
i �H)�(x�3i) � h�(x�)+h (a)� f (a)+ "i; for all i 2 I;

and
(x�1i + x

�
2i + x

�
3i; "i)! (x�; 0+):

Proof. It is worth observing that a 2 A\dom f \domh is a global minimum
of (DC) if and only if a is a global optimal solution of (DC1), if and only if

f(x) + iC(x) + i�S(H(x))� h(x) � f (a)� h (a) ; 8x 2 X;

if and only if

f(x) + iC(x) + i�S(H(x)) � h(x) + f (a)� h (a) ; 8x 2 X:

Applying Theorem 1 with iC , i�S , and ~h := h(�) + f (a) � h (a) playing
the roles of g, k, and h, respectively, the last inequality is equivalent to the
fact that: for every x� 2 domh� there exists a net (x�1i; x�2i; x�3i; z�i ; "i)i2I �
(X�)3 � Z� � R satisfying

f�(x�1i)+i
�
C(x

�
2i)+i

�
�S(z

�
i )+(z

�
i �H)�(x�3i) � h�(x�)+h (a)�f (a)+"i; for all i 2 I;

and
(x�1i + x

�
2i + x

�
3i; "i)! (x�; 0+):

The argument used in the last part of the proof of Theorem 3 ensures that
z�i 2 S+ for all i 2 I, and hence, i��S(z�i ) = 0 for all i 2 I. The proof is
complete. �

Necessary conditions for local optimality of (DC) without quali�cation
condition can be derived directly from previous results and the following
lemma.

Lemma 3. Let f; h : X ! R, a 2 f�1(R) \ h�1(R); and assume that f is
convex. If a is a local minimum of f � h; then

@h(a) � @f(a):

Proof. By assumption, there is V 2 N(a) such that

f(x)� h(x) � f(a)� h(a); 8x 2 V:
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For any x� 2 @h(a) one thus has
f(x) � h(x) + f(a)� h(a)

� hx�; x� ai+ f(a); 8x 2 V;
and

f(x)� hx�; xi � f(a)� hx�; ai ; 8x 2 V;
which implies that a is a local minimum (hence, global) of the convex func-
tion f � hx�; �i : Thus,

0 2 @(f � hx�; �i)(a) = @f(a)� fx�g;
entailing x� 2 @f(a): �
Proposition 3 (Necessary condition for local optimality for (DC)).
Let f; h; H; C; and S be as in Theorem 3. If a 2 A \ dom f \ domh is a
local minimum of (DC) then

@h(a) � lim sup
�!0+

0@ [
z�2S+

f@�f(a) + @�(z� �H)(a) +N�(C; a)g

1A ;
or, equivalently, for any x� 2 @h(a), there exists exists a net (x�1i; x�2i; x�3i; z�i ; �i)i2I �
(X�)3 � Z� � R such that

x�1i 2 @�if(a); x�2i 2 N�i(C; a); x�3i 2 @�i(z�i �H)(a);
z�i 2 S+; 0 � hz�i ;�H(a)i � �i, and
(x�1i + x

�
2i + x

�
3i; �i) �! (x�; 0+).

Proof. If a 2 A \ dom f \ domh is a local minimum of (DC), then it is also
a local solution of the DC program (DC1). Since f + iC + i�S �H is convex,
it follows from Lemma 3 that

@h(a) � @(f + iC + i�S �H)(a):
Combining this inclusion and the formula of subdi¤erentials of the function
f + iC + i�S �H in Theorem 2, we get

@h(a) � lim sup
�!0+

0@ [
z�2@�i�S(H(a))

f@�f(a) + @�(z� �H)(a) +N�(C; a)g

1A :
Note that z� 2 @�i�S(H(a)) implies z� 2 S+. The �rst assertion is proved.
The second assertion is just another representation of the �rst one, with

some observation: z�i 2 S+, and z�i 2 @�i�S(H(a)); which implies 0 �
hz�i ;�H(a)i � �i. �

We now consider a special case of (DC) where X = Rm; Z = Sn is the
space of symmetric (n � n)-matrices, and H(x) := �F0 �

Pm
j=1 xiFj for

all x = (x1; � � � ; xm) 2 Rm, where F0; Fj 2 Sn. Denote by � the Löwer
partial order of Sn, that is, for M;N 2 Sn, M � N means that M � N is
a positive semide�nite matrix. Sn will be considered as a vector space with
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the trace inner product de�ned by hM;Ni := Tr[MN ] where Tr[:] is the
trace operation.
Let S be the cone of all positive semide�nite matrices of Sn. Then S+ = S

and M 2 S if and only if Tr[ZM ] � 0 for all Z 2 S. Given F0; Fj 2 Sn,
j = 1; � � � ;m, we are interested in the inclusion involving a semide�nite
inequality and a DC inequality of the following form:

fx 2 Rm : x 2 C; F0 +
mX
j=1

xjFj � 0g � [f � h � 0]:

Let H(x) = �F0 �
Pm
j=1 xjFj . Let further Ĥ(x) =

Pm
j=1 xjFj . Then

Ĥ : Rm ! Sn is a linear operator and its dual operator Ĥ� is

Ĥ�(Z) = (Tr[F1Z]; : : : ;Tr[FmZ]); Z 2 Sn:

The proof of the next result is based upon Theorem 3.

Proposition 4 (Farkas lemma involving semide�nite and DC in-
equalities). Let X = Rm, f; h 2 �(Rm), and C � Rm be a closed convex
set. Assume that C \dom f \H�1(�S) 6= ;. Then the following statements
are equivalent:
(a) fx 2 Rm : x 2 C; F0 +

Pm
j=1 xjFj � 0g � [f � h � 0];

(b) for all x� 2 domh�, there exists a net (x�1i; x�2i; Zi; "i)i2I � (Rm)2 �
Sn � R such that Zi � 0, for all i 2 I,

f�(x�1i) + i
�
C(x

�
2i) + Tr[F0Zi] � h�(x�) + "i; for all i 2 I;

and

(x�1i + x
�
2i � Ĥ�(Zi); "i)! (x�; 0+):

Proof. We observe �rst that the inequality in (a) can be rewritten as follows:

C \H�1(�S) � [f � h � 0]:

Moreover, for each Z 2 S and u 2 Rm, we have

(Z �H)�(u) = sup
x2Rm

fhu; xi � hZ;H(x)ig

= sup
x2Rm

8<:hu; xi+
mX
j=1

xj Tr[ZFj ] + Tr[ZF0]

9=;
= Tr[ZF0] + sup

x2Rm
hu+ Ĥ�(Z); xi:

Therefore,

(Z �H)�(u) =
�
Tr[ZF0]; if u = �Ĥ�(Z);
+1; otherwise:

The conclusion now follows directly from Theorem 3. �
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7. Convex and semidefinite optimization without CQ�s

Taking h � 0 in Theorem 3 we get a generalized version of Farkas lemma
for convex system without constraint quali�cation as shown in the next
result.

Proposition 5 (Farkas lemma for convex systems). Assume that f; C; H;
and S satisfy the conditions in Theorem 3. Then the following statements
are equivalent:
(a) C \H�1(�S) � [f � 0];
(b) there exists a net (x�1i; x

�
2i; x

�
3i; z

�
i ; "i)i2I � (X�)3 � Z� � R such that

(z�i )i2I � S+;

f�(x�1i) + i
�
C(x

�
2i) + (z

�
i �H)�(x�3i) � "i; for all i 2 I;

and
(x�1i + x

�
2i + x

�
3i; "i)! (0; 0+):

(c) there exists a net (z�i )i2I � S+ such that

f(x) + lim inf
i2I

(z�i �H)(x) � 0; 8x 2 C:

Proof. The equivalence between (a) and (b) follows directly from Theorem
3 with h � 0 (and hence, domh� = f0g). Next, we prove [(b) ) (c)] and
[(c)) (a)].
� [(b) ) (c)] Assume that (b) holds. By the de�nition of conjugate

functions, we get, for any x 2 C, any i 2 I,

f�(x�1i) � hx�1i; xi � f(x);
i�C(x

�
2i) � hx�2i; xi;

(z�i �H)�(x�3i) � hx�3i; xi � (z�i �H)(x);

where x�1i; x
�
2i; x

�
3i; and z

�
i ; i 2 I; are the elements in the net whose existence

is assumed in (b). Then the inequality in (b) yields

f(x) + (z�i �H)(x) � �"i � hx�1i + x�2i + x�3i; xi; 8i 2 I:

We get (c) by taking the lim infi2I in both sides of the last inequality.
� [(c)) (a)] Assume (c) holds. If x 2 C \H�1(�S) then (z�i �H)(x) � 0

for all i 2 I (note that z�i 2 S+ and H(x) 2 �S). Hence, since x 2 C;

f(x) � f(x) + lim inf
i2I

(z�i �H)(x) � 0:

Thus, (a) holds. �

It is worth observing that the equivalence between statements (a) and
(c) in Proposition 5 was established in [8] and [20] in the case where X is
a re�exive Banach space and H is a continuous mapping, while the other
equivalences, to our knowledge, are new. The generalized version of Farkas
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lemma in Proposition 5 and its counterpart for the system involving semi-
de�nite functions given below are the key tools for establishing asymptotic
Lagrangian conditions for convex and semide�nite programs (see [9], [22]).

Corollary 2 (Farkas lemma for convex systems with semide�nite
constraints). Assume that f; C; and H satisfy the conditions in Proposi-
tion 4. Then the following statements are equivalent:
(a) fx 2 Rm : x 2 C; F0 +

Pm
j=1 xjFj � 0g � [f � 0];

(b) there exists a net (x�1i; x
�
2i; Zi; "i)i2I � (Rm)2�Sn�R such that Zi � 0,

for all i 2 I,
f�(x�1i) + i

�
C(x

�
2i) + Tr[F0Zi] � "i; for all i 2 I;

and
(x�1i + x

�
2i � Ĥ�(Zi); "i)! (x�; 0+):

(c) there exists a net (Zi)i2I � Sn such that Zi � 0, for all i 2 I, and
f(x) + lim inf

i2I
Tr[ZiH(x)] � 0; 8x 2 C:

Proof. It is a direct consequence of Proposition 5 with H(x) = �F0 �Pm
j=1 xjFj . The equivalence between the �rst two statements comes from

Proposition 4. �

Taking h � 0 in the problem (DC), we come back to the classical convex
optimization problem of the following form

(PC) minimize f(x) s.t. x 2 C and H(x) 2 �S;
which was considered in many recent works (see, for instance, [2], [22], [27],
[30]). We now give some consequences of the previous results for this class of
problems. More precisely, we will give a result about sequential optimality
conditions and Lagrange duality for (PC), which improves those established
in [9], [20], [22], and [27].

Proposition 6 (Optimality characterization for (PC)). Let f 2 �(X),
H : X ! Z satisfying z� � H 2 �(X) for all z� 2 S+. For any a 2
C \ (dom f) \H�1(�S) the following assertions are equivalent:
(a) a is optimal for (PC);
(b) there exist (�i)i2I ! 0+; and for every i 2 I; there also exist x�1i 2
@�if(a); x

�
2i 2 N�i(C; a); z

�
i 2 S+; and x�3i 2 @�i(z

�
i � H)(a) such that

0 � hz�i ;�H(a)i � �i and limi(x�1i + x�2i + x�3i) = 0:

Proof. Observe that the local minima of (PC) are global because this prob-
lem is convex.
For the implication [(a) ) (b)], apply Proposition 3 with h � 0, and

hence, @h(a) = f0g.
The converse implication can be proved directly, using de�nitions of �-

subdi¤erentials as in [22, Theorem 3.2]. �
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We now give a direct application of Proposition 6 to a class of simple
semide�nite programming problems which have received much attention in
the last decades (see, e.g., [2], [6], and references therein). For the sake of
simplicity, we consider the case where C = X = Rm and f(x) = hc; xi,
x = (x1; � � � ; xm) 2 Rm; where c is a given vector in Rm. Speci�cally, we
consider the linear semide�nite programming problem:

(SDP) minimize hc; xi s.t. F0 +
mX
j=1

xjFj � 0:

Here F0; F1; � � � ; Fm are given matrices of Sn (we maintain the notation of
Proposition 4). We get the following result from Proposition 6.

Corollary 3 (Optimality characterization for (SDP)). Let c 2 X =
Rm. Assume that a is a feasible solution of (SDP). Then a is an optimal
solution of (SDP) if and only if there exists a net (Zi)i2I � Sn such that
Zi � 0, for all i 2 I, and

Ĥ�(Zi)! c; Tr[ZiH(a)]! 0:

Proof. It is worth observing that for any � > 0, and any Z 2 Sn, @�(Z �
H)(a) = �Ĥ�(Z). The conclusion now follows directly from Proposition
6. �
Farkas lemmas for convex/semide�nite systems (Proposition 5 and Corol-

lary 2) may be used to derive asymptotic Lagrangian conditions for convex
problem (PC) , which recover the ones given recently in [22] and [9] as shown
in the next result. But �rst, let us denote by

L(x; z�) := f(x) + (z� �H)(x)
the Lagrange function of (PC). Sometimes we write (z�i ) instead of (z

�
i )i2I :

Proposition 7 (Duality theorem for (PC)). Let f 2 �(X) and H :
X ! Z satisfying z��H 2 �(X) for all z� 2 S+. If dom f\C\H�1(�S) 6= ;
then there exists a net (�z�i ) � S+ such that

sup
(z�i )�S+

inf
x2C

lim inf
i2I

L(x; z�i ) = inf
x2C

lim inf
i2I

L(x; �z�i ) = inf(PC):

Moreover,

inf
x2C

sup
(z�i )�S+

lim inf
i2I

L(x; z�i ) = sup
(z�i )�S+

inf
x2C

lim inf
i2I

L(x; z�i ):

Proof. When inf(PC) = �1 the inequalities hold trivially (the net (�z�i )i2I �
S+ can be an arbitrarily chosen). Assume that inf(PC) 2 R. Then we have

C \H�1(�S) � [f � inf(PC)]:
By Proposition 5, applied to f � inf(PC) instead of f , there exists (�z�i )i2I �
S+ such that

f(x) + lim inf
i2I

(�z�i �H)(x) � inf(PC); 8x 2 C;
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which yields

(7.1) inf
x2C

lim inf
i2I

L(x; �z�i ) = inf
x2C

[f(x) + lim inf
i2I

(�z�i �H)(x)] � inf(PC):

On the other hand, note that if z� 2 S+ and x 2 H�1(�S) then (z��H)(x) �
0. Therefore,
(7.2)
inf(PC) � inf

x2C\H�1(�S)
sup

(z�i )�S+
lim inf
i2I

L(x; z�i ) � inf
x2C

sup
(z�i )�S+

lim inf
i2I

L(x; z�i ):

The statement follows by combining (7.1), (7.2), and the following straight-
forward inequalities:

inf
x2C

sup
(z�i )�S+

lim inf
i2I

L(x; z�i ) � sup
(z�i )�S+

inf
x2C

lim inf
i2I

L(x; z�i ) � inf
x2C

lim inf
i2I

L(x; �z�i ):

�

Remark 1. When X and Z are re�exive Banach spaces, and H is an S-
convex and continuous mapping, Proposition 6 coincides with [22, Theorem
3.2] (see also [20], [27]) while, under the additional condition C = X, Propo-
sition 7 coincides with [9, Theorem 3.1]. In the same manner, using the
Farkas lemma for semide�nite systems (Corollary 2), we can establish the
asymptotic Lagrangian condition for (SDP) that covers the one given in [9].

8. Infinite linear optimization without CQ�s

In this section we consider di¤erent kinds of linear systems and linear
optimization problems with an arbitrary number of constraints.

Proposition 8 (Farkas lemma for linear systems I). Consider two
l.c.H.t.v.s.�s X and Z, let S be a preordering closed convex cone in Z, let
A : X ! Z be a linear mapping such that for all z� 2 S+ we have A�z� 2 X�,
were A� is the adjoint operator of A, and let b 2 Z be such that the linear
system Ax � b (i.e. Ax � b 2 �S) is consistent. Then, for any x� 2 X�,
r 2 R, the following statements are equivalent:
(a) x 2 X and Ax � b =) hx�; xi � r;
(b) there exists a net (z�i ; "i)i2I � S+ � R such that

hz�i ; bi � r + "i; 8i 2 I; and (A�z�i ; "i)! (x�; 0+):

Proof. This is a direct consequence of the generalized Farkas lemma, Theo-
rem 3, with f � 0, C = X, H(x) = Ax� b, and h(x) = hx�; xi � r. �

Remark 2. If A is continuous, for all z� 2 Z�; A�z� is continuous since
hA�z�; �i = hz�; A(�)i : Therefore, the assumption in Proposition 8 holds.

Given an arbitrary set T; consider the space RT equipped with the product
topology and the space

R(T ) = f� 2 RT : �nitely many �t are di¤erent from 0g;
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equipped with the direct sum topology. It is well-known that (RT ;R(T )) is
a dual pair through the bilinear form given by

h; �i =
X
t2T

t�t; for all  2 R(T ); � 2 RT ;

and according to this fact, (RT )� = R(T ) and (R(T ))� = RT .
By means of this notation, the convex conical hull of a set fxt; t 2 Tg � X

can be expressed as cone fxt; t 2 Tg =
�P
t2T

�txt : � 2 R(T )+

�
; where �t :=

� (t) ; t 2 T:

Proposition 9 (Farkas lemma for linear systems II). Let X be an
l.c.H.t.v.s., let T be an arbitrary (possibly in�nite) index set, and let x�t 2
X�; rt 2 R; for all t 2 T; such that the linear inequality system fhx�t ; xi � rt; t 2 Tg
is consistent. Then, for any pair x� 2 X�, r 2 R, the following statements
are equivalent:
(a) x 2 X and hx�t ; xi � rt; for all t 2 T =) hx�; xi � r;
(b) there is a net

�
�i; "i

�
i2I � R

(T )
+ � R such thatX

t2T
�itrt � r + "i; 8i 2 I; and

 X
t2T

�itx
�
t ; "i

!
! (x�; 0+):

(c) (x�; r) 2 cone f(x�t ; rt) ; t 2 T ; (0; 1)g :

Proof. The equivalence between (a) and (b) follows directly from Proposi-
tion 8, just by taking Z = RT , S = RT+, Ax = (hx�t ; xi)t2T , b = (rt)t2T ,

Z� = R(T ); and S+ = R(T )+ . Here, if  = (t)t2T 2 R
(T )
+ we have A� =P

t2T tx
�
t 2 X�:

� [(b)) (c)] Assume that (b) holds. Let �i := r+"i�
P
t2T

�itrt � 0; 8i 2 I:

Then (c) holds because

(x�; r) = lim
i2I

(X
t2T

�it (x
�
t ; rt) + �i (0; 1)

)
and

P
t2T

�it (x
�
t ; rt) + �i (0; 1) 2 cone f(x�t ; rt) ; t 2 T ; (0; 1)g for all i 2 I.

� [(c) ) (a)] Assume that (c) holds. Let (�i)i2I � R(T )+ and (�i)i2I be

such that (x�; r) = limi2I

�P
t2T

�it (x
�
t ; rt) + �i (0; 1)

�
: Then, for any x 2 X

such that hx�t ; xi � rt; t 2 T; we have
hx�; xi � r = h(x�; r) ; (x� 1)i

= limi2I

�P
t2T

�it h(x�t ; rt) ; (x� 1)i+ �i h(0; 1) ; (x� 1)i
�

= limi2I

�P
t2T

�it (hx�t ; xi � rt)� �i
�
� 0:
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Thus (a) holds. �

The equivalence between (a) and (c) was proved in [7, Theorem 2]. The
�nite dimensional version of this result (X = Rn) is a basic theoretical tool
in linear semi-in�nite programming (LSIP in brief). Next we consider the
in�nite linear programming problem

(LIP)

�
minimize hc�; xi
s.t. x 2 A;

where A := fx 2 X : hx�t ; xi � rt; t 2 Tg :

Proposition 10 (Primal optimal value of (LIP)). Let X; T; x�t ; and
rt; t 2 T; be as in Proposition 9, and let c� 2 X�: Then, one has

inf(LIP) = sup fs 2 R : (c�; s) 2 �cone f(x�t ; rt) ; t 2 T ; (0; 1)gg 2 R [ f�1g:

Proof. Let us denote

� : = inf(LIP);

� : = sup fs 2 R : (c�; s) 2 �cone f(x�t ; rt) ; t 2 T ; (0; 1)gg :

We �rst prove that � � �:
If � = �1; the inequality trivially holds. If � > �1; one has � 2

R because the feasible set of (LIP) is nonempty by assumption. Observe
that (x�; r) := �(c�; �) satis�es the condition (a) in Proposition 9, which is
equivalent to (c), i.e. to

(c�; �) 2 �cone f(x�t ; rt) ; t 2 T ; (0; 1)g

and, so, by the own de�nition of �; � � �:
We now prove the opposite inequality � � �: Let s 2 R be such that

(c�; s) 2 �cone f(x�t ; rt) ; t 2 T ; (0; 1)g :

By Proposition 9, for any feasible point x of (LIP) we have hc�; xi � s:
Taking the supremum over s and the in�mum over x 2 A; we get � � �: �

Corollary 4 (Optimality characterization for (LIP)). Let X, T; x�t ;
and rt; t 2 T; be as in Proposition 9. Let c� 2 X� and consider a 2 A: Then
the following statements are equivalent:
(a) a is an optimal solution of (LIP);
(b) there is a net

�
�i; "i

�
i2I � R

(T )
+ � R such that

X
t2T

�itrt � "i � hc�; ai ; 8i 2 I; and
 X
t2T

�itx
�
t ; "i

!
! (�c�; 0+):

In that case, the optimal value of (LIP) is

(8.1) inf(LIP) = max fs 2 R : (c�; s) 2 �cone f(x�t ; rt) ; t 2 T ; (0; 1)gg 2 R:
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Proof. Taking x� = �c� and r = �hc�; ai ; the equivalence between (a)
and (b) follows from the corresponding equivalence in Proposition 9, whose
statement (c) becomes here

(c�, hc�; ai) 2 �cone f(x�t ; rt) ; t 2 T ; (0; 1)g ;

and this, together with Proposition 10, implies (8.1). �

To the authors� knowledge the above characterization of optimality in
LIP is new. Even in �nite dimensions, no characterization of the optimal
solution in LSIP without CQ is available (the KKT condition is su¢ cient,
but not necessary, and the same is true for stronger conditions as those
obtained in [13] by means of the concept of extended active constraints). In
the same framework, the �nite dimensional version of (8.1) is the well-known
geometric interpretation of the optimal value of the primal LSIP problem
(see, e.g., [12, (8.5)]). If one considers (LIP) as a parametric optimization
problem with parameter c�, then (8.1) can be interpreted in terms of the
hypograph of the optimal value function of (LIP); �i�A (�c�) :

� epi i�A(�) = hypo�i�A (� (�)) = �cone f(x�t ; rt) ; t 2 T ; (0; 1)g :

Next we extend from LSIP to LIP the notion of Haar�s dual problem:

(DLIP)

8><>:
maximize

P
t2T

�trt

s.t.
P
t2T

�tx
�
t = c

�; � 2 �R(T )+ :

It is easy to check that, adopting the standard conventions sup ; = �1
and inf ; = +1; one has

(8.2)
�1 � sup(DLIP)

= sup fs 2 R : (c�; s) 2 � cone f(x�t ; rt) ; t 2 T ; (0; 1)gg
� inf(LIP) � +1;

and so, the weak duality holds. If (LIP) is feasible and cone f(x�t ; rt) ; t 2 T ; (0; 1)g
is w��closed, it comes from Proposition 10 and (8.2) that

�1 � sup(DLIP) = inf(LIP) < +1:

Moreover if (DLIP) is feasible, then

�1 < max(DLIP) = inf(LIP) < +1;

i.e. strong duality holds in the sense that there is no duality gap and the
dual problem has at least an optimal solution.
It is worth observing that the constraints of (DLIP) constitute a linear sys-

tem in the decision space R(T ): The following corollary is a Farkas lemma for

linear systems posed in R(T ); whose general form is
�P
t2T

�ta
j
t � sj ; j 2 J

�
;

with aj 2 RT and sj 2 R; for all j 2 J:
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Corollary 5 (Farkas lemma for linear systems III). Let f
P
t2T

�ta
j
t �

sj ; j 2 Jg be a consistent system in R(T ): Then, for any pair a 2 RT ; s 2 R,
the following statements are equivalent:
(a) � 2 R(T ) and

P
t2T

�ta
j
t � sj ; j 2 J =)

P
t2T

�tat � s;

(b) there exists a net (i; "i)i2I � R(J)+ � R such thatX
j2J

ijrj � r + "; 8i 2 I; and (A�i; "i)! (a; 0+);

where A�i =
P
j2J

ija
j :

Proof. It is a direct consequence of Proposition 8 taking X = R(T ); A :
R(T ) ! Z = RJ (equipped with the product topology) such that (A�)j =P
t2T

�ta
j
t ; 8j 2 J; S = RJ+ (so that S+ = R

(J)
+ ); b = (sj)j2J ; and x

� = a: �

Corollary 6 (Optimality characterization for (DLIP)). Let X be
an l.c.H.t.v.s., let T be an arbitrary (possibly in�nite) index set, and let
c�; x�t 2 X�; rt 2 R; for all t 2 T; such that the linear inequality system
f
P
t2T

�tx
�
t = c

�; � 2 �R(T )+ g is consistent. Let � 2 R(T ) be a feasible solution

of (DLIP): Then the following statements are equivalent:
(a) � is an optimal solution of (DLIP);

(b) there exists a net (�i; "i)i2I �
�
R(X) � R(T )+

�
� R such thatX

x2X
hc�; xi�ix �

X
t2T

�trt + "i; 8i 2 I; and
�
A��i; "i

�
! (r; 0+);

where r = (rt)t2T and
�
A��i

�
t
=
P
x2X

hx�t ; xi�ix + �it; 8i 2 I:

Proof. (a) can be reformulated as

� 2 R(T ) and
X
t2T

�ta
j
t � sj ; j 2 J =)

X
t2T

�tat � s,

just taking at = rt; for all t 2 T; s =
P
t2T

�trt; J = (X � f0; 1g) [ T; with

a
(x;k)
t = (�1)k hx�t ; xi ; s(x;k) = (�1)k hc�; xi ; for all (x; k) 2 X � f0; 1g ;
aut = 1; if t = u; and a

u
t = 0; otherwise, and su = 0; for all u 2 T: Applying

Corollary 5 we get (a) , (b) by de�ning �ix := 
i
(x;0) � 

i
(x;1) for all x 2 X

and �it = 
i
t for all t 2 T . �

The last two results are new even in �nite dimensions (compare, e.g., with
[1] and [12]).
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